Skip to main content

Predicting whether the bank will give loan to its customers based on their credit score (Logistic Regression)

"The best thing about data is that it tells a story." - Naveen Jain

Today let's have a look at another machine learning model know as Logistic Regression.

Logistic Regression is a statistical model where the outcome is predicted as binary such as YES or NO, based on the previous/train_dataset.

(Please open the images in a new tab or try to zoom-in)

  • import required models


  • read your dataframe

  • visualize your dataset


  • create Logistic Regression model


  • split your data into train and test dataset


  • fit your train dataset into the regression model


  • predict future values







  • visualize your predicted values


Github link for pdf: click here


Comments

Popular posts from this blog

Glowing Border effect using html/css

  {html code} <html>     <head>         <link href='E:\html\.vscode\.vscode\style.css' type='text/css' rel='stylesheet'>         <title>Glowing Border</title>     </head>     <body>         <div class='box'>             <div class='text'>             <h2><u>Glowing Border</u></h2>             <p>HTML and CSS are technically not the programming languages, they are the scripting languages.              Usually used for the front-end development.</p>             </div>         </div>             </body> </html> {css code} body{     background: black;     display: ...

What are some methods for optimizing Oracle databases for large data inserts?

 For large data inserts I can suggest you few things like: Use trigger(PL/SQL) Use APPEND hint Remove indexes on tables Firstly, while you use triggers in the table it could leave data to be logically corrupt. And it will then perform insert in a very conventional way. Which is a time consuming process and won’t helps us! Secondly, using APPEND hint will help us to an extend. So, APPEND hint tells the optimizer to perform a direct-insert into the table, which improves the performance. Now there is a way which we could achieve this by minimizing the Redo generation. What Redo do is; it basically ensures the recoverability of data to the database. It writes down every transaction to the archive log. Let’s take a scenario, where if the database is running on the NOARCHIVELOG mode, using APPEND hint will reduce the redo generation i.e; it won’t write into the archive log anymore and thus increases the speed. But then it won’t be able to recover at any point in time if your data is ambi...

Stock Market using Python

 "The stock market is a device for transferring money from the impatient to the patient." - Warren Buffett Today we'll look into few ways for accessing the stock market. And we'll do this using Python ! Now, as we know that there are 2 stock exchange in India; BSE and NSE So we'll get the data from both! To begin with let's access the data from BSE first. (P.S: I certainly like the 2nd and the 3rd method to access stock market!) * So, to import the BSE data we need to " pip install bsedata ". => And then import the module, => Create an object to store the Driver Class => Then we need to do " getQuote('script_code')" where we need to provide a script code of a company which we need to access. Just like here we have given; => And from here we can see that the script code was for the company named "V-MART". But we can't remember all the script code hence we need to download this script file from the BSE websi...